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Abstract

Purpose – The aim of this paper is to investigate the onset of bio-thermal convection in a shallow
fluid layer; the convection is thus driven by the combined effect of swimming of oxytactic
microorganisms and inclined temperature gradient.
Design/methodology/approach – Linear stability analysis of the basic state is performed; the
numerical problem is solved using the collocation method.
Findings – The most interesting outcome of this analysis is the correlation between three Rayleigh
numbers, two traditional, ‘‘thermal’’ Rayleigh numbers, which are associated with the vertical and
horizontal temperature gradients in the fluid layer, and the bioconvection Rayleigh number, which is
associated with the density variation induced by the upswimming of microorganisms.
Research limitations/implications – Further research should address the application of weakly
nonlinear analysis to this problem.
Practical implications – The increase of the horizontal thermal Rayleigh number stabilizes the
basic flow. The effect of increasing the horizontal thermal Rayleigh number is to distort the basic
temperature profile away from the linear one. The increase of the Schmidt number stabilizes the basic
flow. The increase of the Prandtl number first causes the bioconvection Rayleigh number to decrease
and then to increase.
Originality/value – To the best of the authors’ knowledge, this is the first research dealing with the
effect of inclined temperature gradient on the stability of bioconvection.
Keywords Convection, Temperature distribution, Thermal stability, Fluids, Microbiology
Paper type Research paper
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Nomenclature

b chemotaxis constant

C dimensionless oxygen concentration
~CC dimensional oxygen concentration

defined in Equation (8)
~CC0 free-surface dimensional oxygen

concentration

~CCmin minimum dimensional oxygen
concentration that microorganisms
need in order to be active

DN diffusivity of microorganisms

DC diffusivity of oxygen

g gravity
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G rescaled dimensionless
disturbance amplitude of
oxygen concentration, �= &

H depth of the horizontal fluid
layer

ĤH heaviside step function
~jj total flux of microorganisms

due to macroscopic convection
of the fluid, self-propelled
swimming of microorganisms,
and diffusion of micro
organisms, ~nn~vvþ ~nn ~WW�DNr~nn

k; l dimensionless wavenumbers in
the x- and y-directions,
respectively

k̂k vertically downward unit vector

m dimensionless wavenumber,
m2 ¼ k2 þ l2

n dimensionless number density
of motile microorganisms, ~nn=n0

~nn number density of motile
microorganisms

~nn0 average number density of the
micro-organisms, defined in
Equation (20)

p excess pressure (above
hydrostatic)

Pe bioconvection Péclet number,
bWc=DN

Pr Prandtl number, �=��w

RaB bioconvection Rayleigh number,
gH 3���~nn0=�DN

RaH horizontal thermal Rayleigh
number, g�H 4�H�w=��

RaV vertical thermal Rayleigh
number, g�H 3�T�w=��

Sc Schmidt number, �=DN�w

t dimensionless time,~tt�=�H 2

~tt time

T dimensionless temperature,
ð~TT � ~TT0Þ=�T

~TT temperature

~TT0 ambient temperature

~uu; ~vv; ~ww ~xx; ~yy; ~zz-velocity components,
respectively

Us, Vs, Ws x, y, z-components of the
dimensionless steady-state
velocity, ~UUsH�=�; ~VVsH�=�;
~WWsH�=�, respectively

~UUs, ~VVs, ~WWs ~xx; ~yy; ~zz-components of the
steady-state velocity,
respectively

~vv fluid convection velocity
vector ð~uu; ~vv; ~wwÞ

Wc parameter characterizing
the maximum cell
swimming speed

~WW average microorganisms’
swimming velocity relative
to the fluid, defined in
Equation (7)

~xx; ~yy; ~zz Cartesian coordinates (~zz is
the downward vertical
coordinate)

x, y, z dimensionless Cartesian
coordinates, ~xx=H , ~yy=H , and
~zz=H , respectively

Greek symbols

� thermal diffusivity of the
suspension

� volumetric expansion
coefficient of the fluid

�H horizontal temperature
gradient

� rate of consumption of
oxygen by the
microorganisms

� diffusion parameter, DC=DN

�C difference between the free-
surface and minimum oxygen
concentrations, ~CC0 � ~CCmin

�T temperature difference
between the lower and top
surfaces measured at the
same ð~xx; ~yyÞ position
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�� density difference, �cell � �w

� average volume of a
microorganism

� rescaled dimensionless disturbance
amplitude of temperature,
�ð�=DN Þ

� dynamic viscosity

�w density of water

�cell density of cells

	 dimensionless disturbance
frequency

& dimensionless rate of consumption
of oxygen by the microorganisms,
�n0H 2=DC�C

$ dimensionless parameter, Pe&

Subscript

s steady state

1. Introduction
Bioconvection is the spontaneous formation of macroscopic fluid patterns, such as
falling plumes. It results from complex interaction of phenomena at different
physical scales. The process is driven by the directional locomotion of self-propelled
microorganisms that are denser than water; the swimming of each individual
microorganism is a mesoscale physical phenomenon. The macroscopic density
gradient caused by swimming of a large number of microorganisms (whose swimming
velocity typically has an upward component) induces convection instability that
results in the formation of a spatially periodic macroscopic fluid circulation.

The purpose of this paper is to investigate the interaction between bioconvection
caused by motile oxytactic microorganisms, such as bacteria Bacillus subtilis, and natural
convection caused by an inclined temperature gradient. The goal is to obtain a steady-
state solution for a system subjected to an inclined temperature gradient and then
investigate how the inclined temperature gradient affects the stability of this steady-state
solution. The theory of oxytactic bioconvection was developed in Hillesdon et al. (1995),
Hillesdon and Pedley (1996), and Metcalfe and Pedley (1998, 2001). Becker et al. (2004)
extended this theory to oxytactic bioconvection in porous media and Avramenko and
Kuznetsov (2005) investigated the onset of oxytactic bioconvection in superimposed fluid
and porous layers. Kuznetsov (2005a, b) introduced the theory of bio-thermal convection
caused by the combined effect of vertical temperature gradient and the upswimming of
oxytactic microorganisms in clear fluids, Kuznetsov (2006a) extended this theory to bio-
thermal convection in porous media, and Kuznetsov (2006b) investigated the effect of
high-frequency vibration on the onset of oxytactic bioconvection.

The instability problem of natural convection in a fluid layer of finite depth induced
by the inclined temperature gradient was first investigated by Weber (1973, 1978). Nield
(2004) reformulated the linear stability analysis for the inclined temperature gradient
problem to lift the restrictions on the range of the Prandtl number. Recent advances in
convection problems associated with an inclined temperature gradient are documented
in Kaloni and Lou (2002, 2005), who considered extensions of this problem to Oldroyd-B
and viscoelastic fluids; and Shklyaev and Nepomnyashchy (2004), who studied the
stability of thermocapillary flows generated by an inclined temperature gradient.
Recently, Avramenko and Kuznetsov (2010) investigated a combined bioconvection and
thermal instability problem in a horizontal layer of finite depth with a basic temperature
gradient inclined to the vertical, so that the basic flow (driven by the horizontal
component of temperature gradient) is a single cell – the Hadley circulation. In
Avramenko and Kuznetsov (2010), the suspension consisting of gyrotactic motile
microorganisms was considered. The purpose of this paper is to investigate the onset of
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bio-thermal convection in a suspension of oxytactic microorganisms, such as bacteria
Bacillus subtilis, in a fluid layer with an inclined temperature gradient.

It is assumed that the inclined temperature gradient is moderate, so that the
temperature variation does not kill the microorganisms and does not affect their oxytactic
behavior. The dependence of the solubility of oxygen in water on the temperature is
neglected. Oxytactic bacteria require oxygen for their metabolism and swim up the
oxygen gradients. They require a minimum oxygen concentration, ~CCmin, in order to be
active. Since this paper deals with a shallow layer, it is assumed that even at the bottom of
the layer the oxygen concentration is larger than the minimum concentration.

2. Governing equations
The model for bioconvection used in this study is based on that presented in Hillesdon
et al. (1995), Hillesdon and Pedley (1996), and Metcalfe and Pedley (1998, 2001). This
model is supplemented by an energy equation and a buoyancy term in the momentum
equation that results from the inclined temperature gradient. The geometry of the
problem is similar to that considered in Nield (2004) (see Figure 1). The suspension of
oxytactic microorganisms is confined in a shallow horizontal box with small height-to
length and height-to-width aspect ratios. The two horizontal walls of the box are at a
distance H apart. A Cartesian coordinate system (~xx; ~yy; ~zz) (with the ~zz-axis vertically
downward) is chosen such that its origin is in the middle of the box. A linear horizontal
temperature gradient is imposed in the ~xx-direction, and a constant temperature
difference is imposed between the two horizontal walls. The situation described above
can be realized in a carefully planned lab experiment. The Boussinesq approximation
is utilized. Under these assumptions, the governing equations are presented as:

�w
@~vv

@~tt
þ ð~vvrÞ~vv

� �
¼ �rpþ �r2~vvþ k̂kðn���g � �wg�ð~TT � ~TT0ÞÞ ð1Þ

divð~vvÞ ¼ 0 ð2Þ

@~nn

@~tt
¼ �divð~jjÞ ð3Þ

@ ~TT

@~tt
þ ð~vvrÞ~TT ¼ �r2 ~TT ð4Þ

Figure 1.
Definition sketch
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@C

@~tt
þ ð~vvrÞC ¼ DCr2C � �~nn

�C
ð5Þ

where the total flux of microorganisms due to macroscopic convection of the fluid, self-
propelled swimming of microorganisms, and diffusion of microorganisms is given by:

~jj ¼ ~nn~vvþ ~nn ~WW� DNr~nn ð6Þ

where DN is the diffusivity of microorganisms; � is the thermal diffusivity of the
suspension; g is the gravity; ~nn is the number density of motile microorganisms; ~TT is
the temperature; ~TT0 is the ambient temperature; p is the excess pressure (above
hydrostatic); k̂k is the vertically downward unit vector; ~tt is the time; ~vv is the fluid
convection velocity vector with components ~uu; ~vv; ~ww; � is the average volume of a
microorganism; � is the volumetric expansion coefficient of the fluid; � is the dynamic
viscosity, assumed to be approximately the same as that of water; �� ¼ �cell � �w is
the density difference; �w is the density of water; �cell is the density of cells; DC is
the diffusivity of oxygen; and ��~nn=�C describes the consumption of oxygen by the
microorganisms in the fluid.

The average directional swimming velocity of a microorganism is approximated as
(Hillesdon and Pedley, 1996):

~WW ¼ bWcĤHðCÞrC ð7Þ

where b is the chemotaxis constant (m) and Wc is a parameter characterizing the
maximum cell swimming speed (m/s) (the product bWc is assumed to be constant). The
dimensionless oxygen concentration, C, in Equations (5) and (7) is defined as:

C ¼
~CC � ~CCmin

~CC0 � ~CCmin

¼
~CC � ~CCmin

�C
ð8Þ

where ~CC is the dimensional oxygen concentration, ~CC0 is the free-surface dimensional
oxygen concentration, and ~CCmin is the minimum dimensional oxygen concentration
that microorganisms need in order to be active. Since for the shallow layer C > 0
throughout the layer thickness, the Heaviside step function, ĤHðCÞ, in Equation (7) is
equal to unity.

3. Boundary conditions
As in Nield (2004), the ratio of the height to the length of the layer is assumed to be
sufficiently small so that fluid motion in the horizontally central part of the box is not
affected by lateral end effects.

If the top surface is rigid, the following conditions are satisfied there:

~vv ¼ 0; ~TT ¼ ~TT0 � �H~xx; C ¼ 1; ~jj � k̂k ¼ 0 at ~zz ¼ 0 ð9Þ

where �H is the constant horizontal temperature gradient.
If the top surface is stress-free, the first equation in (9) must be replaced with the

following two equations:
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@2ðvkÞ
@~zz2

¼ 0; ~vv � k̂k ¼ 0 ð10Þ

The last equation in (9) ð~jj � k̂k ¼ 0Þ can be recast as:

~nnbWc
@C

@~zz
� DN

@~nn

@~zz
¼ 0 ð11Þ

At the bottom of the layer (assumed to be rigid) the following conditions are satisfied:

~vv ¼ 0; ~TT ¼ ~TT0 þ�T � �H~xx;
@C

@~zz
¼ 0; ~jj � k̂k ¼ 0 at ~zz ¼ 1 ð12Þ

The last equation in (12) ð~jj � k̂k ¼ 0Þ, accounting for @C=@~zz ¼ 0, can be recast as:

@~nn

@~zz
¼ 0 ð13Þ

4. Steady-state solution
From Equations (1)-(5) and the fact that the layer is infinite in the horizontal directions
it follows that at steady state the number density of microorganisms, ~nns, is a function of
the vertical coordinate only; under this condition the steady-state solutions for the
temperature and velocity components are, respectively (Nield, 2004):

Ts ¼ z� 1

2
� Ra2

H

RaV
x� Ra2

H

5;760RaV
7 z� 1

2

� �
� 40 z� 1

2

� �3

þ48 z� 1

2

� �5
 !

; ð14Þ

Us ¼ �
RaH

24Pr
z� 1

2

� �
� 4 z� 1

2

� �3
 !

; Vs ¼Ws ¼ 0 ð15Þ

where the dimensionless ~xx and ~zz coordinates, steady-state temperature, and velocity
components are defined by the following equations, respectively:

x ¼ ~xx=H ; z ¼ ~zz=H ; Ts ¼
~TTs � ~TT0

�T
; Us ¼

~UUsH�

�
; Vs ¼

~VVsH�

�
; Ws ¼

~WWsH�

�

ð16Þ

and the vertical thermal Rayleigh number, horizontal thermal Rayleigh number, and
Prandtl number are defined, respectively, as:

RaV ¼
g�H 3�T�w

��
; RaH ¼

g�H 4�H�w

��
; Pr ¼ �

��w
ð17Þ

The steady-state solutions for Cs and ~nns are found in Hillesdon et al. (1995) as follows:
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Cs ¼ 1� 2

Pe
ln

cosðA1ð1� zÞ=2Þ
cosðA1=2Þ ð18Þ

ns ¼
A1

2Pe&
sec2ðA1ð1� zÞ=2Þ ð19Þ

where,

Pe ¼ bWc

DN

; ns ¼
~nns

~nn0
; & ¼ �

~nn0H 2

DC�C
; ~nn0 ¼

1

H

ðH
0

~nn d~zz; ð20Þ

where ~nn0 is the average number density of the microorganisms. The constant A1 is the
smallest positive root of the following transcendental equation:

tan
1

2
A1

� �
¼ Pe&

A1
ð21Þ

5. Linear stability analysis
The perturbations are introduced as follows:

½n;T; v; p;C� ¼½nsðzÞ;Tsðx; zÞ; vsðUsðzÞ; 0; 0Þ; psðzÞ;CsðzÞ�
þ ½NðzÞ;�ðzÞ;VðUðzÞ;VðzÞ;WðzÞÞ;PðzÞ;�ðzÞ� exp½iðkxþ ly� 	tÞ�

ð22Þ

where,

y ¼
~yy

H
; t ¼

~tt�

�H 2
ð23Þ

k and l are the dimensionless wavenumbers in the x- and y-directions, respectively, and
	 is the dimensionless disturbance frequency.

Substituting Equation (22) into the dimensionless version of Equations (1)-(5)
and linearizing results in equations for the amplitudes U, V, W, P, N, �, and �. The
elimination of P, U, and V from these equations for amplitudes gives the following
equations for the remaining amplitudes W, G (G is related to � by first equation in (28)),
N, and � (� is related to � by third equation in (28)):

d4W

dz4
þ ½�2m2 þ ið	� kUsÞ�

d2W

dz2
þ m4 þ i m2kUs þ k

d2Us

dz2
�m2	

� �� �
W

¼ m2ðRaBN � RaV �Þ
ð24Þ

d2

dz2
�$ dGs

dz

d

dz
� m2 þ iScðkUs � 	Þ þ$

d2Gs

dz2

� �� �
N

¼ ns$
d2G

dz2
�m2G

� �
þ dns

dz
W þ$ dG

dz

� � ð25Þ
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d2

dz2
� ðm2 þ iPrðkUs � 	ÞÞ

� �
� ¼ dTs

dz
W ð26Þ

�
d2

dz2
� ð�m2 þ iScðkUs � 	ÞÞ

� �
G ¼ �N þW

dGs

dz
ð27Þ

where,

G ¼ �

&
; Gs ¼

Cs

&
; � ¼ �

�

DN
; RaB ¼

gH 3���~nn0

�DN
ð28Þ

� ¼ DC

DN
; $ ¼ Pe&; m2 ¼ k2 þ l2; Sc ¼ �

DN�w
ð29Þ

where RaB is the bioconvection Rayleigh number and Sc is the Schmidt number.
Steady-state solutions in Equations (24)-(28) are those given by Equations (14), (15),

(18), and (19).
If both the lower and top boundaries are assumed rigid, Equations (24)-(27) must be

solved subject to the following boundary conditions:

W ¼ 0;
dW

dz
¼ 0; � ¼ 0; G ¼ 0; Pe ns

dG

dz
þ N

dGs

dz

� �
¼ dN

dz
at z ¼ 0

ð30Þ

W ¼ 0;
dW

dz
¼ 0; � ¼ 0;

dG

dz
¼ 0;

dN

dz
¼ 0 at z ¼ 1 ð31Þ

If the top boundary is stress-free, second equation in (30) (dW/dz¼ 0) must be replaced
with the following equation:

d2W

dz2
¼ 0 ð32Þ

6. Numerical method and validation
The collocation method (Fletcher, 1984) is used for obtaining the numerical solution of
the eigenvalue problem for Equations (24)-(27). For the case of the no-slip condition at the
top surface (boundary conditions for this case are given by Equations (30) and (31)) the
basis functions are:

W ¼
XM
j¼1

ajz
jþ1ð1� zÞjþ1;

� ¼
XM
j¼1

bjz
jð1� zÞj;
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N ¼ 1þ 

XM
j¼1

cjz
jð1� z=2Þ j;

G ¼
XM
j¼1

djz
jð1� z=2Þ j; ð33a, b, c, dÞ

where,


 ¼ A1ðA1 � sin A1Þ
1þ cos A1

ð34Þ

(M ¼ 100 is used in the numerical implementation of the code.)
For the case of the stress-free top boundary (see Equation (32)), Equation (33a) must

be replaced with:

W ¼
XM
j¼1

ajðz� 3z3 þ 2z4Þjþ1 ð35Þ

The solution of the eigenvalue problem leads to the following dependence:

RaB ¼ RaBðm; k;RaV ; RaH ; $; Sc; Pr; �; 	Þ ð36Þ

Table I.
Comparison of the

critical bioconvection
Rayleigh number and

wavenumber in
this paper

� $
Hillesdon and Pedley (1996) Present paper

mcr RaB,cr mcr RaB,cr

1 0.05 1.37 10,200 1.38 10,237
1 1 1.58 625 1.58 625
1 10 1.90 200 1.90 200

Notes: Critical wavenumber obtained in this paper with that reported in Table III of Hillesdon and
Pedley (1996), computations are performed for an isothermal layer with a stress-free top boundary

Table II.
Values of dimensionless

parameters

Parameter Definition Range or typical value

Sc ð�=�wÞ=DN 7,700
Pr ð�=�wÞ=� 1-11
& �~nn0H 2=DC�C 43.75
Pe WcH=DN 0-37.5
$ Pe & 0-1,640
� DC=DN 16
RaV g�H 3�T�w=�� 0-284,375
RaH g�H 4�H�w=�� 0-7,200
RaB gH 3���~nn0=�DN 15,625
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for the bioconvection Rayleigh number. The critical bioconvection Rayleigh number is
then obtained as:

RaB;cr ¼ minfRaBðm; k;RaV ;RaH ; $; Sc;Pr; �; 	i ¼ 0Þg ð37Þ

where 	i is the imaginary part of 	.
The collocation method for this eigenvalue problem is implemented utilizing the

Matlab package. For validating the numerical code data obtained in Hillesdon and
Pedley (1996) are used. Table I presents a comparison between the values of RaB,cr and
mcr that follow from Equations (24)-(27) and data of Hillesdon and Pedley (1996). Table I
is for the case of the stress-free top surface (the only boundary condition considered in
the above reference). There is an excellent agreement between the present
computational results and data obtained in Hillesdon and Pedley (1996).

Figure 2.
The stress-free upper
boundary case



Bio-thermal
convection

167

7. Results and discussion
Typical values of the dimensionless parameters for a soil bacterium Bacillus subtilis
are estimated in Hillesdon and Pedley (1996) as follows: Pe ¼ 15H , & ¼ 7H 2, and
� ¼ 16, where the layer depth, H, must be given in mm. A typical depth of a shallow
layer in experiments described in Hillesdon et al. (1995) was 2.5 mm. For estimating the
vertical and horizontal temperature gradients a 10 �C temperature difference in both
vertical and horizontal direction is assumed; the characteristic length in the horizontal
direction is assumed to be 100 mm. The values of RaV and RaH should be understood as
estimates of the maximum safe values of these parameters so that the temperature
variation does not kill microorganisms; smaller values of RaV and RaH can be easily
realized in a lab experiment. Using parameter values given in Hillesdon and Pedley
(1996) and assuming that ~nn0 ¼ 1015 cell=m3, an estimate of the range or a typical
values of dimensionless parameters is given in Table II. Since the aim of this paper is
not to study a particular biological system (not enough experimental data are available
at this point to accomplish this task) but rather to investigate the trends, RaV ¼
RaH ¼ 100, $ ¼ 1, and Pr ¼ Sc ¼ 1, and � ¼ 1 are adopted as a basic case, and then

Figure 3.
Same as Figure 2, the

rigid upper boundary case
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the values of RaV, RaH, $, Pr, Sc, and � are varied around the basic case values in
Figures 2-8.

Computational results for all parameter values investigated in this research indicate
that the marginal state is stationary. This is in agreement with Hillesdon and Pedley
(1996) who found no oscillatory marginal states for shallow chambers. Computational
results presented in Figures 2 and 4 (stress-free top boundary) and Figures 3 and 5
(rigid top boundary) demonstrate the effects of the horizontal and vertical Rayleigh
numbers on the bioconvection Rayleigh number. These results are computed for
$ ¼ 1, � ¼ 1, and Pr ¼ Sc ¼ 1. Figures 2a and 3a indicate that for both types of
boundary conditions at the top surface the increase of the horizontal Rayleigh number
stabilizes the system (increases the critical value of the bioconvection Rayleigh
number). This suggests that the horizontal temperature gradient has the stabilizing
effect on the system. This is explained as follows. The effect of increasing the

Figure 4.
The stress-free upper
boundary case



Bio-thermal
convection

169

horizontal thermal Rayleigh number is to distort the basic temperature profile away
from the linear one; this produces the stabilizing effect because the destabilizing
vertical temperature gradient is decreased in magnitude in the bulk of the fluid.
Figures 2b and 3b indicate that the increase of the horizontal Rayleigh number
decreases the critical wavenumber for the stress-free top boundary and slightly
increases the critical wavenumber for the rigid top boundary.

Figures 4a and 5a indicate that for both types of boundary conditions at the
top surface and for all values of RaH considered in these computations the critical
bioconvection Rayleigh number, RaB;cr , decreases with the increase of RaV. A similar
trend is observed in Kuznetsov (2005a, b), where the case with no horizontal
temperature gradient is investigated. This is as expected because increasing the
vertical Rayleigh number means the increase of destabilizing effect of the vertical
temperature gradient (positive values of the vertical Rayleigh number correspond to
the negative vertical temperature gradient whose effect is destabilizing). The obtained
results indicate that the boundary condition at the top surface strongly affects the
behavior of the critical bioconvection Rayleigh number. For the stress-free top

Figure 5.
Same as Figure 4, the

rigid upper boundary case



HFF
20,2

170

boundary (Figure 4a) the effect of RaV on RaB;cr becomes less significant for large
values of RaH. For example at RaH ¼ 500 the critical bioconvection Rayleigh number
is almost independent of RaV (the corresponding curve in Figure 4a is a straight
horizontal line). In contrast, for the rigid top surface (Figure 5a) the effect of RaV on
RaB;cr remains significant even for RaH ¼ 500. Figures 4b and 5b indicate that the
increase of the horizontal Rayleigh number increases the critical wavenumber for both
the stress-free and rigid top boundary cases (except for the large horizontal Rayleigh
number case, RaH ¼ 500, in which case mcr is almost independent of RaV for the stress-
free top boundary).

The effect of � on the critical bioconvection Rayleigh number is displayed in Figure
6a; the results are computed for RaV ¼ RaH ¼ 100, $ ¼ 1, and Pr ¼ Sc ¼ 1. The
increase of � stabilizes the basic flow. It can be explained as follows. Increased value
of DC corresponds to more uniform oxygen distribution, smaller gradient of oxygen
concentration, and, according to Equation (7), less vigorously swimming microorganisms.
Since upswimming of microorganisms causes the unstable density stratification, less
vigorously swimming microorganisms result in a more stable basic flow. Figure 6b

Figure 6.
Effect of � on the critical
bioconvection Rayleigh
number, RaB;cr (a) and on
the critical wavenumber,
mcr (b)
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shows that the increase of � decreases the critical wavenumber for both types of
boundary conditions at the top surface.

The effect of the Schmidt number on the critical bioconvection Rayleigh number
is shown in Figure 7a; the results are computed for RaV ¼ RaH ¼ 100, $ ¼ 1, � ¼ 1,
and Pr ¼ 1. The increase of the Schmidt number stabilizes the basic flow; the effect is
most pronounced for large values of Sc. The increase of the Schmidt number also
generally increases the critical wavenumber (Figure 7b).

The effect of the Prandtl number on the critical bioconvection Rayleigh is shown in
Figure 8; the results are computed for RaV ¼ RaH ¼ 100, $ ¼ 1, � ¼ 1, and Sc ¼ 1.
The trend of increasing the Prandtl at lower Pr destabilizes the basic flow, while at
larger Prandtl numbers the increase in Pr stabilizes the flow. In Figure 8a the switch
from destabilizing to stabilizing occurs for the rigid to surface at around Pr ¼ 50
and for the stress-free case at around Pr ¼ 15. The increase of the Prandtl number also
decreases the critical wavenumber.

Figure 7.
Effect of Sc on the critical

bioconvection Rayleigh
number, RaB;cr (a) and on
the critical wavenumber,

mcr (b)
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8. Conclusions
Linear stability analysis of the combined bioconvection and thermal instability
problem in a horizontal layer of finite depth occupied by a suspension of oxytactic
microorganisms in which the basic temperature gradient is inclined to the vertical is
carried out.

The increase of the horizontal thermal Rayleigh number (when the vertical thermal
Rayleigh number is kept constant) stabilizes the basic flow. The effect of increasing the
horizontal thermal Rayleigh number is to distort the basic temperature profile away
from the linear one.

The increase of the Schmidt number stabilizes the basic flow. The increase of the
Prandtl number first causes the bioconvection Rayleigh number to decrease and then to
increase; the dependence RaBðPrÞ thus exhibits a minimum for both stress-free and
rigid top boundaries.

The increase of � stabilizes the basic flow because an increased value of DC

corresponds to more uniform oxygen distribution, smaller gradient of oxygen
concentration, and less vigorously swimming microorganisms.

Figure 8.
Effect of Pr on the critical
bioconvection Rayleigh
number, RaB;cr (a) and on
the critical wavenumber,
mcr (b)
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